If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4+3x^2-7x=0
a = 3; b = -7; c = +4;
Δ = b2-4ac
Δ = -72-4·3·4
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-1}{2*3}=\frac{6}{6} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+1}{2*3}=\frac{8}{6} =1+1/3 $
| 7t=7+18 | | -55x+4x=80+9x | | 27+6x=0+8.25x | | -5=5.1x+2.3 | | 2z=z+34 | | (x-12)/3=7 | | 2x-9=-16+6x-5 | | (v-4)^2-80=0 | | 2x-9=16+6x-5 | | 4w+9=33 | | 8z-16=4z+32 | | 2m+5=6m+9 | | 4.7+4.2c=5.7c-2.8 | | n+92=180 | | 45+4x+5x=180 | | 9x=133 | | 8.2+6x=x-1* | | 0=-16x^2+x+4 | | x2+8x–308=0 | | 34x^2-396x+1296=0 | | 4x+4=4(2x-1) | | 14=a-13 | | -5n^2+n+1=6 | | 7x+43=176 | | x+108=178 | | 4(z+6)(4z+1)=0 | | 2(p-4)=4(2p+1) | | 120-4.5x=45-0.5x | | 3x+17=x^2-25 | | x-12/3=7 | | x+2=2×+1 | | 3(2c-1)=4c+5 |